碳纤维作为高性能纤维的翘楚,一直以来民和军事领域高端应用场景的核心材料之一。鉴于 碳纤维的重要战略意义,上世 60 年代今,从政府层面到产业层面,对碳纤维行业的发展都 倾注了大量的心血,一代一代的科学家和工程师为中国碳纤维独立自主发展贡献了自己的力 量。在 2008年以前,国内碳纤维生产产量小、品质稳定性不高、性价比优势不明显。2008年后,中国的碳纤维企业在军品纤维生产方面实现了真正的突破,并在低成本民品纤维的研发开发上进行大量投入、以与海外产品展开正面竞争。同时长期的研发和生产经验的积累也 让中国碳纤维企业开始冲击高端民用碳纤维领域,与常规产品一道,丰富了中国碳纤维行业的生命力。供应与需求相互映衬,国内碳纤维下游市场快速启动,包括航空航天、风电叶片、 汽车、压力容器等领域,对碳纤维的需求正快速涌现,中国成为全球碳纤维需求增长最快的市场。
碳纤维按拉伸强度和拉伸模量这两项力学性能指标来分,碳纤维可分为通用型碳纤维、高强碳纤维、高模碳纤维、超高强碳纤维、超高模纤维这几种。目前业内没有统一的碳纤维型号划分标准,在实际使用中,有的碳纤维产品编号有 T300、T800、M30 等多种,其中 T 表示强度,M 表示模量。强度上,T 后缀的数字越大代表产品的强度越大,因此强度是 T300 T600 T700 T800 T1000 T1100 ;模量上,M 后缀的数字越大代表产品的模量越大,因此模量是 M30 M40 M46 M50 M60 M65。根据模量大小可分为标模、中模和高模。标准模量的拉伸模量为230-265GPA;中等模量的指拉伸模量为270-315GPA;高模量的指拉伸模量超过315GPA。在实际生产和应用中,碳纤维并非以单根形式独立存在,而是由一定数量的碳纤维丝束组成的,因而提供的产品信息中都会表明其碳纤维品为几 K。其中 1K 就代表在一束碳纤维丝束 中有 1000 根丝,通常小于 24K(含)的碳纤维被称为小丝束,小丝束碳纤维主要应用于航 空航天、武器装备和体育休闲领域,因此又被称为“宇航级”碳纤维。24K 以上的碳纤维被 称为大丝束碳纤维,大丝束碳纤维的粘连、断丝现象相对多,强度和刚度方面的性能比小丝 束碳纤维差,为通用级碳纤维,主要用于汽车、风电叶片等一般工业领域,因此被称为“工业级”碳纤维。小丝束碳纤维的生产成本比大丝束碳纤维高,性能也更加优越,因此价格比大丝束碳纤维更加昂贵。目前标模碳纤维有大丝束与小丝束的区分,标模以上的碳纤维尚无大丝束出现。但未来大丝束可能向中模的方向发展,特别是飞机的大梁、风电的梁帽和汽车 的车身结构,中模大丝束可以为航空航天、风电叶片和新能源汽车领域带来更多轻量化应用。
碳纤维按不同的原材料分类,可以分为 PAN 基碳纤维、沥青基碳纤维或粘胶基碳纤维。PAN 基碳纤维的原料来源丰富,且其抗拉强度其他二者优越,因此 PAN 基碳纤维应用领域最广, 比如航空航天、体育休闲、风电叶片、汽车工业、建筑补强等领域,市场份额占 90%以上。沥青基碳纤维和粘胶基碳纤维的用途较为窄、产量小。通用级沥青碳纤维强度和模量较低, 主要应用于保温材料领域;高性能沥青基碳纤维多用于航空航天的工程材料。粘胶基碳纤维 主要用于制作耐烧蚀和隔热材料。
大多数 PAN 基碳纤维生产企业具备由原丝生产开始到制作碳纤维到最终完成碳纤维产品的完整生产线。目前全球生产 PAN 碳纤维的企主要分布在日本和美国。
从 PAN 原丝到碳纤维,需要经过碳化、表面处理、上浆处理等过程。碳化指的是去除材料 中的非碳元素,使其碳含量超过 90%,由于 PAN 原丝的玻璃化温度低于 100 摄氏度,因此 不能直接碳化,而需要先经过预氧化过程。碳化后,为了赋予纤维更好的粘合性能,需要对 它们进行表面处理,向纤维表面添加氧原子以提供更好的化学键合性,使它们的表面被轻微氧化,并且对表面进行蚀刻和粗糙化以获得更好的机械粘合性能,可通过将纤维浸入各种气 体如空气、二氧化碳或臭氧中以及各种液体,如次氯酸钠或硝酸中可以实现氧化。在表面处理之后,需要涂覆纤维以保护它们在缠绕或编织期间免受损坏,此过程称为上浆处理,涂层材料包括环氧树脂,聚酯,尼龙,聚氨酯等。
沥青基是制造碳纤维的第二大路线,该路线原料来源丰富且碳化收率高,根据学术报告,沥青基碳纤维生产成本仅为 PAN 基碳纤维的 1/3-1/4,但因原料调制杂、产品性能较低而未得到大规模发展。沥青基碳纤维的制备工艺包括:原料沥青→ 沥青熔化处理→沥青过滤→沉降法或热滤法的调制→熔喷法或熔纺法纺丝→不熔化处理→ 炭化或石墨化处理。沥青基碳纤维最早于上世纪 60 年代末实现工业化生产。与 PAN 碳纤维相比,沥青基碳纤维强度方面不如 PAN 基碳纤维,但高性能沥青基碳纤维在模量、 摩擦和导热方面具有优势,因此在航空航天领域具有不可替代的优势地位。
粘胶基碳纤维的制备工艺包括:粘胶原丝水洗→催化浸渍→预氧化→低温碳化→高温碳化。原料主要为木浆和棉浆,美国、俄罗斯和白俄斯多用木浆,我国则以棉浆为主。根据学术报告,由于粘胶纤维理论总碳量 仅为44.5%,加上制造过程中的热解反应,粘胶基碳纤维生产效率只有 10%-30%,所以制备成本相对更高。且其强度较低,不能像 PAN 基碳纤维那样以高倍张力进行预氧化,只有在完成预氧化后的高温处理阶段才可以施加张力。粘胶基碳纤维的优点在于其原材料粘胶纤维是天然产物,粘胶纤维加工过程中无需添加催化剂,因此纤维中可以不含金属离子。凭借这个其他种类碳纤维不具备的优势,在需要保证信号不受干扰的情况下、要求所用的碳纤维 不能含有金属离子时(如战略武器的隔热材料、防静电和防电磁波服装的防护材料),就必须使用粘胶基碳纤维。此外,粘胶基碳纤维具有耐烧蚀的特点,在制造隔热保温材料时不可 替代。
原丝生产是碳纤维的核心技术,原丝的质量好坏直接决定了碳纤维产品的质量、产量、生产 成本和市场竞争能力。质量低劣、均匀性差的丝在后续过程中会产生毛丝缠结、断丝的情况, 导致原丝损耗。原丝成本是整个碳纤维生产成本比例最大的一部分,占 50%以上,所以控制 好原丝质量至关重要。原丝按纺丝方法可分为湿法、干法、干湿法等。
湿法纺丝是将聚合物溶于溶剂中,通过喷丝孔喷出细流,进入凝固浴形成纤维的纺丝方法, 其工艺流程包括制备纺丝原液、原液从喷丝孔出形成细流、原液细流凝固成初生纤维、最后 再将初生纤维卷装或直接进行后处理。湿法纺丝的速度较低,且工艺流程复杂,生产成本较高。
干法纺丝和湿法纺丝一样,都是采用成纤高聚物的浓溶液来形成纤维,但与湿法纺丝不同的是,干法纺丝时原液从喷丝孔压出形成的细流是进入凝固浴液,而是进入纺丝甬道中。甬道 中的热空气流会使原液细流中的溶剂快速挥发,并将挥发出来的溶剂蒸汽带走。在逐渐脱去溶剂的同时原液发生固化,经拉伸定型洗涤干燥等后处理过程便可得到成品纤维。干法纺丝可以进行连续生产,且纺丝速度高、产量大、对环境污染少,并且纤维质量及耐化学性和染色性能比湿纺纤维好。干法纺丝的缺点在于生产的纤维耐氯性较差、工艺技术难度较大,生产成本比干湿法高,比湿法低。
干湿法,也称干喷湿纺法,是将干法与湿法纺丝相结合的纺丝方法。干湿法纺丝是将纺丝原 液从喷丝头压出后,先经过一段空气层,再进凝固浴,初生纤维从凝固浴液中导出后处理过程与湿法纺丝相同。纺丝原液流出喷丝头后通过空气层时形成的纤维能在空气层中经受喷丝头拉伸,并且液流胀大区形变不大,这样可进行高倍的喷丝头拉伸。书中提到,丝条进入凝固浴时已有一定取向度,且脱溶剂化程度较高,能快速固化, 因此纺丝速度比一般湿法纺丝快 5~10 倍,可达到 200~400m/min,纺丝机的生产率能极大提高。干湿法纺丝溶液黏度可达 50~100Pa〃s 及以上,可提高纺丝原液的浓度,减少溶剂的回收及单耗。此外,相比于湿法纺丝,干湿法能比较有效地调节纤维的结构形成过程。干喷湿纺工艺生产效率高、生产出的碳纤维品质好、生产成本低。美国日本的碳纤维龙头公司掌握干湿法技术,使用干湿法生产的碳纤维成为主流,但同时干湿法也是碳纤维行业公认的难以突破的纺丝技术。
将原材料转化成结构件还需要成型这一关键步骤。碳纤维增强复合材料的加工成型工艺有很 多种,包括预浸料热压罐、树脂传递模塑(RM)、拉挤成型、缠绕成型等。目前航空航天领 域常用预浸料热压罐工艺和树脂传递模塑(RTM)工艺,汽车零部件的生产则主要采用 RTM 工艺等模压成型工艺。
预浸料热压罐工艺主要运用于制造高端复合材料,常常在航空航天领域被使用。其工艺流程包括浸润纤维预用树脂将其制成半固化态材料再在模具上手工逐层干法铺贴,然后将其制袋 密封,使内部处于真空,产生负压,最后将其送入热压罐内固化成型。预浸料热压罐工艺制 造的部件品质高、性能稳定、机械强度好,但由于采用手工积层,人工工时费用高、生产效率低且存在一定人工管理难度。
树脂传递模塑工艺是一种适用于高质量、多品种、中批量复合材料的制造工艺,技术成本较低,被广泛应用于航空航天、汽车、体育用品领域。其工艺流程包括将纤维经预成型、预编织处理后将预成型纤维体铺放在模具型腔内,合模后用压力设备往模腔中注入树脂,浸润纤维,最后固化脱模成型。树脂传递模塑工艺的生产效率高,制品双面光洁且尺寸精度高,适用于制作结构复杂的零件。
拉挤成型工艺适用于制造高纤维体积含量的低成本复合材料,如制造风电叶片的梁帽,其工艺流程包括在牵引设备的作用下将连续纤维进行树脂浸润浸后通过成型模具加热,挤出多余树脂,使其固化。该工艺可以连续成型,制品长度不受限制,纵向力学性能突出,生产过程 自动化程度高,生产效率高,制品性能稳定,成本低。缺点是只能生产线形产品,且横向强度低。
缠绕成型工艺常被用于制造压力容器、钓竿、传动轴等制品,在土木建筑领域也多有应用。其工艺流程包括将浸过树脂胶液的连续纤维按一定规律缠绕到芯模上,然后经固化、脱模获得制品。用缠绕成型工艺制成的纤维能保持连续完整、制品强度高、可机械化连续性生产、 生产周期短。但该工艺生产设备复杂,需要杂绕机、芯模、固化加热炉、脱模机等设备,存在一定的技术难度,且不能缠任意结构形式的制品,产品形状单一。
本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。